Incremental Slow Feature Analysis: Adaptive and Episodic Learning from High-Dimensional Input Streams

نویسندگان

  • Varun Raj Kompella
  • Matthew D. Luciw
  • Jürgen Schmidhuber
چکیده

Slow Feature Analysis (SFA) extracts features representing the underlying causes of changes within a temporally coherent high-dimensional raw sensory input signal. Our novel incremental version of SFA (IncSFA) combines incremental Principal Components Analysis and Minor Components Analysis. Unlike standard batch-based SFA, IncSFA adapts along with non-stationary environments, is amenable to episodic training, is not corrupted by outliers, and is covariance-free. These properties make IncSFA a generally useful unsupervised preprocessor for autonomous learning agents and robots. In IncSFA, the CCIPCA and MCA updates take the form of Hebbian and anti-Hebbian updating, extending the biological plausibility of SFA. In both single node and deep network versions, IncSFA learns to encode its input streams (such as high-dimensional video) by informative slow features representing meaningful abstract environmental properties. It can handle cases where batch SFA fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Slow Feature Analysis: Adaptive Low-Complexity Slow Feature Updating from High-Dimensional Input Streams

We introduce here an incremental version of slow feature analysis (IncSFA), combining candid covariance-free incremental principal components analysis (CCIPCA) and covariance-free incremental minor components analysis (CIMCA). IncSFA's feature updating complexity is linear with respect to the input dimensionality, while batch SFA's (BSFA) updating complexity is cubic. IncSFA does not need to st...

متن کامل

Reinforcement Learning on Slow Features of High-Dimensional Input Streams

Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only appl...

متن کامل

Incremental Slow Feature Analysis

The Slow Feature Analysis (SFA) unsupervised learning framework extracts features representing the underlying causes of the changes within a temporally coherent high-dimensional raw sensory input signal. We develop the first online version of SFA, via a combination of incremental Principal Components Analysis and Minor Components Analysis. Unlike standard batch-based SFA, online SFA adapts alon...

متن کامل

Adaptive Support Vector Machine for Time-Varying Data Streams Using Martingale

Introduction In this paper we propose an efficient adaptive support vector machine (SVM) for time-varying data streams based on the martingale approach [2] and using adiabatic incremental learning [1]. When a new data point is observed, hypothesis testing decides whether any change has occurred. Once a change is detected, historical information about previous data is removed from the memory. Th...

متن کامل

Incremental episodic segmentation and imitative learning of humanoid robot through self-exploration

Imitation learning through self-exploration is an essential mechanism in developing sensorimotor skills for human infants as well for robots. We assume that a primitive sense of self is the prerequisite for successful social interaction rather than an outcome of it. During imitation learning, a crucial element of conception involves segmenting the continuous flow of motion into simpler units – ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1112.2113  شماره 

صفحات  -

تاریخ انتشار 2011